Dynamo Generated Turbulence and Large Scale Magnetic Elds in a Keplerian Shear Ow
نویسندگان
چکیده
The nonlinear evolution of magnetized Keplerian shear ows is simulated in a local, three-dimensional model, including the eeects of compressibility and stratiication. Supersonic ows are initially generated by the Balbus-Hawley magnetic shear instability. The resulting ows regenerate a turbulent magnetic eld which, in turn, reinforces the turbulence. Thus, the system acts like a dynamo that generates its own turbulence. However, unlike usual dynamos, the magnetic energy exceeds the kinetic energy of the turbulence by a factor of 3{10. By assuming the eld to be vertical on the outer (upper and lower) surfaces we do not constrain the horizontal magnetic ux. Indeed, a large scale toroidal magnetic eld is generated, mostly in the form of toroidal ux tubes with lengths comparable to the toroidal extent of the box. This large scale eld is mainly of 1 even (i.e. quadrupolar) parity with respect to the midplane and changes direction on a timescale of about 30 orbits, in a possibly cyclic manner. The eeective Shakura-Sunyaev alpha viscosity parameter is between 0.001 and 0.005, and the contribution from the Maxwell stress is about 3-7 times larger than the contribution from the Reynolds stress.
منابع مشابه
An Incoherent Dynamo in Accretion Disks
We use the mean-eld dynamo equations to show that spatially and temporally incoherent uctuations in the helicity in mirror-symmetric turbulence in a shearing ow can generate a large scale, coherent magnetic eld. We illustrate this eeect with simulations of a few simple systems. For statistically homogeneous turbulence we nd that the dynamo growth rate is roughly ?2=3 eddy ?1=3 shear N ?1=3 eddy...
متن کاملPeriodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows.
The nature of dynamo action in shear flows prone to magnetohydrodynamc instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to three-dimensional dissipative incompressible magnetohydrodynamic equations with rotati...
متن کاملNonlocal dynamo waves in a turbulent shear flow
Abstract. The turbulent dynamo action in a shear flow is considered by making use of a quasilinear approximation and neglecting the back-reaction of a generated magnetic field on turbulence. The shear can stretch turbulent magnetic field lines in such a way that turbulent motions may become suitable for the generation of a large-scale magnetic field even in the absence of any stratification. Th...
متن کاملNonlinear shear-current dynamo and magnetic helicity transport in sheared turbulence
The nonlinear mean-field dynamo due to a shear-current effect in a nonhelical homogeneous turbulence with a mean velocity shear is discussed. The transport of magnetic helicity as a dynamical nonlinearity is taken into account. The shear-current effect is associated with the W×J term in the mean electromotive force, where W is the mean vorticity due to the large-scale shear motions and J is the...
متن کاملDynamo-generated Turbulence and Outtows from Accretion Discs
Local hydromagnetic simulations of accretion disc turbulence provide now the most convincing evidence that the origin of turbulence in discs could be the Balbus{Hawley magneto-rotational instability. The main results of such calculations are highlighted with particular emphasis on the generation of large scale magnetic elds. Comparison with mean-eld dynamo theory is made. This theory is then us...
متن کامل